数码宝贝
亚古兽进化—>暴龙兽!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
动态规划算法
1.动态规划算法的核心思想是将大问题分解成小问题解决,从而一步步获取最优解的处理算法
2.与分治方法不同的是,适合于用动态规划求解的问题,经分解得到的子问题往往不是互相独立的
3.动态规划可以通过填表的方式来逐步推进,得到最优解
背包问题
看了上面图片的内容后,我直接上代码:
public class KnapsackProblem {
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] w = {1, 4, 3 };//物品的重量
int[] val = {1500, 3000, 3100}; //物品的价值 这里val[i] 就是前面讲的v[i]
int m = 5; //背包的容量
int n = val.length; //物品的个数
//创建二维数组,
//v[i][j] 表示在前i个物品中能够装入容量为j的背包中的最大价值
int[][] v = new int[n+1][m+1];
//为了记录放入商品的情况,我们定一个二维数组
int[][] path = new int[n+1][m+1];
//初始化第一行和第一列, 这里在本程序中,可以不去处理,因为默认就是0
for(int i = 0; i < v.length; i++) {
v[i][0] = 0; //将第一列设置为0
}
for(int i=0; i < v[0].length; i++) {
v[0][i] = 0; //将第一行设置0
}
//根据前面得到公式来动态规划处理
for(int i = 1; i < v.length; i++) { //不处理第一行 i是从1开始的
for(int j=1; j < v[0].length; j++) {//不处理第一列, j是从1开始的
//公式
if(w[i-1]> j) { // 因为我们程序i 是从1开始的,因此原来公式中的 w[i] 修改成 w[i-1]
v[i][j]=v[i-1][j];
} else {
//说明:
//因为我们的i 从1开始的, 因此公式需要调整成
//v[i][j]=Math.max(v[i-1][j], val[i-1]+v[i-1][j-w[i-1]]);
//v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j - w[i - 1]]);
//为了记录商品存放到背包的情况,我们不能直接的使用上面的公式,需要使用if-else来体现公式
if(v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
//把当前的情况记录到path
path[i][j] = 1;
} else {
v[i][j] = v[i - 1][j];
}
}
}
}
//输出一下v 看看目前的情况
for(int i =0; i < v.length;i++) {
for(int j = 0; j < v[i].length;j++) {
System.out.print(v[i][j] + " ");
}
System.out.println();
}
System.out.println("============================");
//输出最后我们是放入的哪些商品
//遍历path, 这样输出会把所有的放入情况都得到, 其实我们只需要最后的放入
// for(int i = 0; i < path.length; i++) {
// for(int j=0; j < path[i].length; j++) {
// if(path[i][j] == 1) {
// System.out.printf("第%d个商品放入到背包\n", i);
// }
// }
// }
//动脑筋
int i = path.length - 1; //行的最大下标
int j = path[0].length - 1; //列的最大下标
while(i > 0 && j > 0 ) { //从path的最后开始找
if(path[i][j] == 1) {
System.out.printf("第%d个商品放入到背包\n", i);
j -= w[i-1]; //w[i-1]
}
i--;
}
}
}